Poisson distribution

(redirected from Poisson distributions)
Also found in: Dictionary, Medical, Financial, Encyclopedia.
Related to Poisson distributions: binomial distributions
Graphic Thesaurus  🔍
Display ON
Animation ON
Legend
Synonym
Antonym
Related
  • noun

Words related to Poisson distribution

a theoretical distribution that is a good approximation to the binomial distribution when the probability is small and the number of trials is large

References in periodicals archive ?
are independent identical Poisson distributions with intensity [[lambda].
Also utilized in this study were various statistical methods, including least-square linear regression analysis, Fisher's exact test for 2x2 contingency tables, Spearman's rho, Kendall's tau, the Bernoulli process, and the Poisson distribution.
First the Poisson distribution will be introduced since it is from the Poisson process that the exponential model is often generated (Chou 1969, 215).
To determine the truncated Poisson distribution with rate [[lambda].
Compound mixed Poisson distributions I", Scandinavian Actuarial Journal, 3, pp.
and it consists of normal, lognormal and Poisson distributions.
The probability that n photoelectrons are produced is determined by the Poisson distribution,
Whenever the assumption of Poisson distribution does not hold, statisticians tend to adopt alternative models to strengthen the quality control process.
The problem serves to illustrate an important distinction between the hypergeometric and either the binomial or the Poisson distributions.
Emphasis continues to be placed on the increasing relevance of Bayesian inference to discrete distribution, especially with regard to the binomial and Poisson distributions.
In their modeling of claims data, they tend to use Poisson distributions and add heterogeneity to improve the fit.
The effect of the mean-variance relationship for the gamma and Poisson distributions can be shown by choosing one of these distributions and moving the slider.
For models based on gamma or Poisson distributions, the relations (1)-(3) define a GLM with [Y.
First, one may consider mixed Poisson distributions by treating [lambda] as the outcome of a random variable.
In this section predictive distributions for the exponential and Poisson distributions are provided.