# million

(redirected from 1048576)
Also found in: Dictionary, Encyclopedia.
Graphic Thesaurus  🔍
 Display ON Animation ON
 Legend Synonym Antonym Related
• all
• noun

## Synonyms for million

### (in Roman numerals, M written with a macron over it) denoting a quantity consisting of 1,000,000 items or units

#### Related Words

References in periodicals archive ?
For this case, two level factorial design would require 1048576 points and the CCD would require 1048617 points.
> X:={seq(ithprime(2*i),i=1..20)}; X := {3, 7, 13, 19, 29, 37, 43, 53, 61, 71, 79, 89, 101, 107, 113, 131, 139, 151, 163, 173} > N:=sum (X[ithprime(i)],i=1..8); N := 574 > count:=0: subsetsum(X,{},N);count; {3, 7, 13, 19, 29, 37, 43, 53, 61, 71, 107, 131} true 223 > N:=sum (X[i],i=1..8); N := 204 > count:=0: subsetsum(X,{},N);count; {3, 7, 13, 19, 29, 37, 43, 53} true 9 > N:=sum (X[i],i=11..18); N := 910 > count:=0: subsetsum(X,{},N);count; {3, 7, 13, 19, 29, 37, 43, 53, 61, 71, 107, 131, 163, 173} true 27803 Given that the number of subsets to be searched through using an exhaustive search is [22.sup.20] = 1048576, we see that backtracking can provide a better alternative.
FIGURE 3 The results of the penny-doubling problem A B 1 1 2 2 3 4 4 8 5 16 6 32 7 64 8 128 9 256 10 512 11 1024 12 2048 13 4096 14 8192 15 16384 16 32768 17 65535 18 131072 19 262144 20 524288 21 1048576 22 2097152 23 4194304 24 8388608 25 16777216 26 33554432 27 67108864 28 134217728 29 268435456 30 536870912 31 1073741824 FIGURE 4 The sum of the penny doubling A B C 1 1 1 2 2 3 3 4 7 4 8 15 5 16 31 6 32 63 7 64 127 8 128 255 9 256 511 10 512 1023 The students wanted to put "penny doubling" into a spreadsheet.
We also computed the server storage used up by Path ORAM, Ring ORAM, XOR Ring, and Onion ORAM while varying the number of nodes N as 1024, 4096,16384, 65536, 262144, 1048576, 4194304, and 16777216.
N Path Ring XOR Ring 1024 33.54 50.80 50.80 4096 134.20 203.27 203.27 16384 536.85 813.15 813.15 65536 214747 3252.66 3252.66 262144 8589.92 13010.71 13010.71 1048576 34359.72 52042.90 52042.90 4194304 137438.93 208171.67 208171.67 16777216 549755.80 832686.76 832686.76 N Onion w/o AHE Onion with AHE 1024 33.77 40.90 4096 135.12 170.27 16384 540.52 708.65 65536 2162.15 2963.83 262144 8648.64 12331.96 1048576 34594.60 51311.27 4194304 138378.46 213499.06 16777216 553513.90 888345.90
[n.sub.x] [beta] = 1.3 [beta] = 1.7 [beta] = 1.3 [beta] = 1.7 32768 6.0 (0.43) 7.0 (0.47) 6.8 (0.90) 6.0 (0.81) 65536 6.0 (0.96) 7.0 (0.97) 6.4 (1.93) 6.0 (1.75) 131072 6.0 (1.85) 7.0 (2.23) 5.9 (3.93) 5.9 (3.89) 262144 6.0 (7.10) 7.1 (8.04) 5.4 (12.78) 6.0 (13.52) 524288 6.0 (15.42) 7.8 (19.16) 5.1 (25.71) 6.0 (27.40) 1048576 6.0 (34.81) 8.0 (41.76) 4.9 (51.02) 6.3 (62.57) TABLE 5.3 The solver IKPIK is presented, for a variety of meshes and two different values of [beta] in both the constant and the variable coefficient cases.
(1) Long keystream data set test: it begins by generating [2.sup.20] bits for each of the 300 random CK (set IV to zero in all the cases) to obtain 300 vectors of 1048576 bits.
Site: Follow: Share:
Open / Close